2,231 research outputs found

    Actions speak louder than words: designing transdisciplinary approaches to enact solutions

    Get PDF
    Sustainability science uses a transdisciplinary research process in which academic and non-academic partners collaborate to identify a common problem and co-produce knowledge to develop more sustainable solutions. Sustainability scientists have advanced the theory and practice of facilitating collaborative efforts such that the knowledge created is usable. There has been less emphasis, however, on the last step of the transdisciplinary process: enacting solutions. We analyzed a case study of a transdisciplinary research effort in which co-produced policy simulation information shaped the creation of a new policy mechanism. More specifically, by studying the development of a mechanism for conserving vernal pool ecosystems, we found that four factors helped overcome common challenges to acting upon new information: creating a culture of learning, co-producing policy simulations that acted as boundary objects, integrating research into solution development, and employing an adaptive management approach. With an increased focus on these four factors that enable action, we can better develop the same level of nuanced theoretical concepts currently characterizing the earlier phases of transdisciplinary research, and the practical advice for deliberately designing these efforts

    Spatial Analysis of Post-Hurricane Katrina Thermal Pattern and Intensity in Greater New Orleans: Implications for Urban Heat Island Research

    Get PDF
    In 2005, Hurricane Katrina’s diverse impacts on the Greater New Orleans area included damaged and destroyed trees, and other despoiled vegetation, which also increased the exposure of artificial and bare surfaces, known factors that contribute to the climatic phenomenon known as the urban heat island (UHI). This is an investigation of UHI in the aftermath of Hurricane Katrina, which entails the analysis of pre and post-hurricane Katrina thermal imagery of the study area, including changes to surface heat patterns and vegetative cover. Imagery from Landsat TM was used to show changes to the pattern and intensity of the UHI effect, caused by an extreme weather event. Using remote sensing visualization methods, field data, and local knowledge, the author found there was a measurable change in the pattern and intensity of the New Orleans UHI effect, as well as concomitant changes to vegetative land cover. This finding may be relevant for urban planners and citizens, especially in the context of recovery from a large-scale disaster of a coastal city, regarding future weather events, and other natural and human impacts

    Latent Self-Exciting Point Process Model for Spatial-Temporal Networks

    Full text link
    We propose a latent self-exciting point process model that describes geographically distributed interactions between pairs of entities. In contrast to most existing approaches that assume fully observable interactions, here we consider a scenario where certain interaction events lack information about participants. Instead, this information needs to be inferred from the available observations. We develop an efficient approximate algorithm based on variational expectation-maximization to infer unknown participants in an event given the location and the time of the event. We validate the model on synthetic as well as real-world data, and obtain very promising results on the identity-inference task. We also use our model to predict the timing and participants of future events, and demonstrate that it compares favorably with baseline approaches.Comment: 20 pages, 6 figures (v3); 11 pages, 6 figures (v2); previous version appeared in the 9th Bayesian Modeling Applications Workshop, UAI'1

    Double Sivers effect asymmetries and their impact on transversity measurements at RHIC

    Get PDF
    We study double transverse spin asymmetries in the Drell-Yan process at measured transverse momentum of the lepton pair. Contrary to what a collinear factorization approach would suggest, a nonzero double transverse spin asymmetry in the laboratory frame a priori does not imply nonzero transversity. TMD effects, such as the double Sivers effect, in principle form a background. Using the current knowledge of the relevant TMDs we estimate their contribution in the laboratory frame for Drell-Yan and W production at RHIC and point out a cross check asymmetry measurement to bound the TMD contributions. We also comment on the transverse momentum integrated asymmetries that only receive power suppressed background contributions.Comment: 12 pages, 11 eps figures, minor changes, matches the published versio

    Turning Contention into Collaboration: Engaging Power, Trust, and Learning in Collaborative Networks

    Get PDF
    Given the complexity and multiplicity of goals in natural resource governance, it is not surprising that policy debates are often characterized by contention and competition. Yet at times adversaries join together to collaborate to find creative solutions not easily achieved in polarizing forums. We employed qualitative interviews and a quantitative network analysis to investigate a collaborative network that formed to develop a resolution to a challenging natural resource management problem, the conservation of vernal pools. We found that power had become distributed among members, trust had formed across core interests, and social learning had resulted in shared understanding and joint solutions. Furthermore, institutions such as who and when new members joined, norms of inclusion and openness, and the use of small working groups helped create the observed patterns of power, trust, and learning

    Effectiveness of grassroots ICT projects: A case study of the Akshaya Project of Kerala State, India

    Get PDF
    This paper reports the findings of a study that examined the effectiveness of grassroots ICT projects in India. It was conducted in 2010 and focused on the Akshaya ICT Project which was launched in 2002 by the IT Mission and the Department of Science and Technology of the State of Kerala, India with voluntary tie-up with some local bodies. The core aim of the project was to make Kerala the first fully e-literate state in India. Data were collected using qualitative and quantitative methods. One hundred respondents of the district were selected and recruited through a two stage sampling technique. The study found that although over half of the respondents had heard about the project, very few were aware of the project’s services. The few who accessed the services did so mainly epayment purposes.Key Words: ICT, Akshaya Project, Kerala, development, e-kendra (e-centre

    Efficient Discrete Approximations of Quantum Gates

    Full text link
    Quantum compiling addresses the problem of approximating an arbitrary quantum gate with a string of gates drawn from a particular finite set. It has been shown that this is possible for almost all choices of base sets and furthermore that the number of gates required for precision epsilon is only polynomial in log 1/epsilon. Here we prove that using certain sets of base gates quantum compiling requires a string length that is linear in log 1/epsilon, a result which matches the lower bound from counting volume up to constant factor.Comment: 7 pages, no figures, v3 revised to correct major error in previous version

    A spatiotemporal estimation framework for real-world LIDAR wind speed measurements

    Get PDF
    Despite significant advances in the remote sensing of fluid flows, light detection and ranging (LIDAR) measurement equipment still presents the problems of having only radial (line-of-sight) wind speed measurements (Cyclops' dilemma). Substantial expanses of unmeasured flow still remain and range weighting errors have a considerable influence on LIDAR measurements. Clearly, more information needs to be extracted from LIDAR data. With this motivation in mind, this brief shows that it is possible to estimate the wind velocity, wind direction, and absolute pressure over the entire spatial region of interest. A key challenge is that most established estimation techniques cater for systems that are finite-dimensional and described by ordinary differential equations (ODEs). By contrast, many fluid flows are governed by the Navier-Stokes equations, which are partial differential-algebraic equations (PDAEs). We show how a basis function decomposition method in conjunction with a pressure Poisson equation (PPE) formulation yields a spatially continuous, strangeness-free, reduced-order dynamic model for which a modified DAE form of the unscented Kalman filter (UKF) algorithm is used to estimate unmeasured velocities and pressure using sparse measurements from wind turbine-mounted LIDAR instruments. The approach is validated for both synthetic data generated from large eddy simulations of the atmospheric boundary layer and real-world LIDAR measurement data. Results show that a reconstruction of the flow field is achievable, thus presenting a validated estimation framework for potential applications including wind gust prediction systems and the preview control of wind turbines

    Wightman function and vacuum densities for a Z_2-symmetric thick brane in AdS spacetime

    Full text link
    Positive frequency Wightman function, vacuum expectation values of the field square and the energy-momentum tensor induced by a Z_{2}-symmetric brane with finite thickness located on (D+1)- dimensional AdS background are evaluated for a massive scalar field with general curvature coupling parameter. For the general case of static plane symmetric interior structure the expectation values in the region outside the brane are presented as the sum of free AdS and brane induced parts. For a conformally coupled massless scalar the brane induced part in the vacuum energy-momentum tensor vanishes. In the limit of strong gravitational fields the brane induced parts are exponentially suppressed for points not too close to the brane boundary. As an application of general results a special model is considered in which the geometry inside the brane is a slice of the Minkowski spacetime orbifolded along the direction perpendicular to the brane. For this model the Wightman function, vacuum expectation values of the field square and the energy-momentum tensor inside the brane are evaluated as well and their behavior is discussed in various asymptotic regions of the parameters. It is shown that for both minimally and conformally coupled scalar fields the interior vacuum forces acting on the brane boundaries tend to decrease the brane thickness.Comment: 25 pages, 6 figures, discussion adde

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe
    • …
    corecore